Additional polymorphisms at marker loci D9S5 and D9S15 generate extended haplotypes in linkage disequilibrium with Friedreich ataxia.
نویسندگان
چکیده
The gene for Friedreich ataxia (FA), a severe recessive neurodegenerative disease, has previously been shown to be tightly linked to the polymorphic markers D9S15 and D9S5 on human chromosome 9. In addition, the observation of linkage disequilibrium suggested that D9S15 is within 1 centimorgan (cM) of the disease locus, FRDA. Although D9S5 did not show recombination with FRDA, its localization was less precise (0-5 cM) due to its lower informativeness. We have now identified additional polymorphisms at both marker loci. Two cosmids spanning 50 kilobases around D9S5 were isolated, and a probe derived from one of them detects an informative three-allele polymorphism. We have found a highly polymorphic microsatellite sequence at D9S15 which is rapidly typed by the DNA polymerase chain reaction. The polymorphism information contents at the D9S5 and D9S15 loci have been increased from 0.14 to 0.60 and from 0.33 to 0.74, respectively. With the additional polymorphisms the lod (log10 odds ratio) score for the D9S15-FRDA linkage is now 48.10 at recombination fraction theta = 0.005 and for D9S5-FRDA, the lod score is 27.87 at theta = 0.00. We have identified a recombinant between D9S15 and FRDA. However, due to the family structure, it will be of limited usefulness for more precise localization of FRDA. The linkage disequilibrium previously observed between D9S15 and FRDA is strengthened by analysis of the haplotypes using the microsatellite polymorphism, while weaker but significant disequilibrium is found between D9S5 and FRDA. Extended haplotypes that encompass D9S5 and D9S15 show a strikingly different distribution between chromosomes that carry the FA mutation and normal chromosomes. This suggests that both marker loci are less than 1 cM from the FRDA gene and that a small number of mutations account for the majority of FA cases in the French population studied. D9S5 and D9S15 are thus excellent start points to isolate the disease gene.
منابع مشابه
Bayesian association-based fine mapping in small chromosomal segments.
A Bayesian method for fine mapping is presented, which deals with multiallelic markers (with two or more alleles), unknown phase, missing data, multiple causal variants, and both continuous and binary phenotypes. We consider small chromosomal segments spanned by a dense set of closely linked markers and putative genes only at marker points. In the phenotypic model, locus-specific indicator vari...
متن کاملThe Pattern of Linkage Disequilibrium in Livestock Genome
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...
متن کاملBayesian analysis of haplotypes for linkage disequilibrium mapping.
Haplotype analysis of disease chromosomes can help identify probable historical recombination events and localize disease mutations. Most available analyses use only marginal and pairwise allele frequency information. We have developed a Bayesian framework that utilizes full haplotype information to overcome various complications such as multiple founders, unphased chromosomes, data contaminati...
متن کاملLinkage disequilibrium mapping via cladistic analysis of single-nucleotide polymorphism haplotypes.
We present a novel approach to disease-gene mapping via cladistic analysis of single-nucleotide polymorphism (SNP) haplotypes obtained from large-scale, population-based association studies, applicable to whole-genome screens, candidate-gene studies, or fine-scale mapping. Clades of haplotypes are tested for association with disease, exploiting the expected similarity of chromosomes with recent...
متن کاملCombining markers into haplotypes can improve population structure inference.
High-throughput genotyping and sequencing technologies can generate dense sets of genetic markers for large numbers of individuals. For most species, these data will contain many markers in linkage disequilibrium (LD). To utilize such data for population structure inference, we investigate the use of haplotypes constructed by combining the alleles at single-nucleotide polymorphisms (SNPs). We i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 87 5 شماره
صفحات -
تاریخ انتشار 1990